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SO(2n + 1) in an SO(2n - 3) 0 SU(2) 0 SU(2) basis: 
I. Reduction of the symmetric representations 

H De Meyert, P De WildeS and G Vanden Berghe 
Seminarie voor Wiskundige Natuurkunde, RUG Krijgslaan 28149, B-9000 Gent, 
Belgium 

Received 22 January 1982 

Abstract. The branching rule for the reduction of symmetric irreducible unitary representa- 
tions (IUR) of the simple Lie group SO(2n + 1) into IUR of its maximal subgroup SO(2n - 
3) 0 SU(2) 0 SU(2) is established for all n 3 3. After the particular case n = 3 is analysed 
in detail, a general proof is presented which is valid for all n P 3. All branching rules 
(n = 3,4,  . . .) can be summmed up in one formula. Also, a dimension verification is carried 
out. The generators of SO(2n + 1) not belonging to the semi-simple subgroup can be 
combined into a mixed tensor-spinor representation with respect to the simple groups 
which occur in the direct product. The precise nature of that representation is indicated 
and discussed. 

1. Introduction 

The problem of obtaining branching rules for representations of semi-simple Lie 
groups has been extensively investigated during the past decades. In many cases, 
however, such a branching is only explicitly established in the form of multiplicity 
tables, of which a wide variety is found in the standard literature (Wybourne 1970, 
McKay and Patera 1981). 

A few years ago two of the present authors (G Vanden Berghe and H De Meyer) 
took up interest in the nuclear multipole phonon state labelling problem, which arises 
in the nuclear collective model. Due to the bosonic character of the phonons, the 
problem is associated to that of the complete classification of states belonging to 
symmetric irreducible representations of the rotation groups SO(2n + l), n = 2,3, . . . . 
Also since SO(3) c SO(2n + l), it is usually demanded to construct orthonormal bases 
of SO(2n + 1) states which are angular momentum states too, in other terms, states 
for which angular momentum 1 and its projection m are good quantum numbers. 
Unfortunately, in the reduction of symmetric IUR of SO(2n + 1) into IUR of its principal 
SO(3) subgroup, in general one or more labels are missing. An interesting solution 
to the quadrupole (n =2) phonon one missing label problem has been given by 
Kemmer er a1 (1968) and Williams and Pursey (1968). These authors first consider 
the reduction of SO(5) into the maximal subgroup SU(2) 0 SU(2). It turns out that 
in this reduction no degeneracies occur. The SU(2) 0 SU(2) states are then combined 
into SO(3) states by means of the Hill-Wheeler projection, a method adapted to the 
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fact that the physical principal SO(3) subgroup of SO(5) is not contained in 
SU(2) 0 SU(2). 

In order to extend this procedure to the octupole (n  = 3) phonon case, and 
eventually to higher multipole phonons (n > 3) too, we treat in the present paper, as 
a first step, the reduction of the symmetric representations of SO(2n + 1) into IUR of 
its maximal subgroup SO(2n - 3) 0 SU(2) 0 SU(2) (Dynkin 1965b). In § 2 we derive 
the corresponding branching rule for n = 3 using a technique described by Stone and 
applied by him to second-rank group reductions (Stone 1970). Section 3 is concerned 
with the generalisation of the proof for all n 3 3 .  In every case it is found that in the 
reduction of the symmetric representations degeneracies are absent. What is more, 
all branching rules can be summarised in one simple formula. For the sake of 
completeness a verification on the dimension of the representations is carried out. 
Also the reduction SO(2n + 1) + [O SU(2)]" is discussed. In § 4 it is indicated how 
the generators of SO(2n +1) which do not belong to the subgroup SO(2n- 
3) 0 SU(2) O SU(2) can be combined into a mixed tensor operator which behaves as 
a vector with respect to SO(2n - 3) and as a spinor with respect to both SU(2). 

2. Branching SO(7) --* SU(2) 0 SU(2) 0 SO(3) 

In order to derive the branching rule for the symmetric IUR of SO(7) into IUR of 
SU(2) 0 SU(2) 0 SO(3) we shall apply hereafter a method developed by Stone (1970). 
The proof is a purely algebraic one, and therefore we convert all notions concerning 
the branching of representations into Lie algebraic language. Hence, we need to 
consider in Cartan's notation the branching B3+ A:OA:OA:, where B3 is the Lie 
algebra of SO(7) and A1 the Lie algebra of SU(2) or SO(3). Lower indices refer to 
the rank of the algebra, whereas upper indices denote the index of the subalgebra 
(Dynkin 1965a), which can be geometrically interpreted here as the square of the 
ratio of the length of the longest simple root of B3 to the length of the simple root 

Usually, the nine positive roots of B3-more accurately root forms-are described 

(1) 

of Al. 

in an orthonormal basis {el, e2, e3} as follows: 

el, e2, e3, el *e2, eife3, e2fe3. 

The three simple roots al,  a 2 ,  a3 are found to be 

a1 = el - e2, = e2- e3, a3 = e3. (2) 
It has to be noticed that the numbering of these roots is not the one uniquely 
encountered, but this fact is irrelevant to our purpose. The irreducible representations 
of B3 are labelled by their highest weight components with respect to the {el, e2, e3} 
basis, i.e. [ w l ,  w2,  w 3 ]  denotes the representation with highest weight 

A =  w l e l + w 2 e 2 + w 3 e 3 =  w l a l + ( w 1 + w 2 ) a 2 + ( w 1 + w 2 + w 3 ) a 3 .  (3) 

Also w 1  b w 2  b w 3  b 0 , ~ .  Further on, we shall consider only the symmetric representa- 
tions [U, 0, 01 where U can be any non-negative integer. 

In the root system of the algebra B3 the appointment of three mutually orthogonal 
simple roots a;, a;, and a; for the subalgebra A:OA:OA: is not unique. Indeed, 
from (1) it is clear that having defined ai, a; and a; in terms of el, e2 and e3, any 
formal permutation of the latter basis vectors leads to another acceptable definition 

1 
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of the simple roots. However, since the branching rule should be independent of any 
particular choice, it is convenient to define 

ai = e l + e 2 ,  a; = e l  -e2, a: =e3.  (4) 
Notice that in Dynkin’s terminology (Dynkin 1965b) the subalgebra is also regular. 
The irreducible representations of A:OA:OA: are labelled by a triple (s, t, U)’ of 
Al-representation labels s, t, U which can take integer or half odd-integer values. Also 
s, t and U,  in this order, form the components in the {ai, a;, a:} basis of the highest 
weight A’ contained in the subalgebra representation. 

At this point it should be clear that we shall constantly use primes when we refer 
to the subalgebra. 

We next introduce certain concepts which are of fundamental importance here. 
A particular root form, namely half the sum of the positive roots of an algebra, for 
which we reserve the symbol R, is one such concept. We easily find 

R = $(5el +3e2+e3) = i ( 5 a l  +8a2+9a3) ,  (5a) 

R ’ = 3 ( 2 e l + e 3 ) = $ ( 2 a 1 + 2 a 2 + 3 a 3 ) .  (5b) 
Another concept which we need is that of the Weyl reflection group (Wybourne 1974). 
This is the finite group generated by all the reflections S,, (with ai any simple root), 

which in weight space transform a weight K into K,, which is the reflected weight 
with respect to the hyperplane normal to ai. Let us construct now the set of all weights 
which under the SO(7) Weyl reflection group are equivalent to a particular weight 
K = (kl, k2, k3)e = klel + k2e2 + k3e3. To that aim we first deduce with the help of the 
definitions (2) and (6) that 

Sq(k1,  k2, k3)e = (k2, kl, k3)e, 

Hence, the set of equivalent weights consists of the 48 elements of the form 

{S(K)} = {(~lkrcl, ,  ~ 2 k r ( 2 ) ,  ~3kn(3JeI9 (8) 

where T is a permutation of (1 ,2 ,3)  and E I ,  ~ 2 ,  ~ 3 ~ { + 1 ,  -1). To each weight (8) is 
associated a parity factor Ss which equals +1 if an even number of basic reflections 
(7) is needed to obtain (8), and -1 if that number is odd. 

Finally we introduce the following expressions: 

5(K) = c 6s exp[S(K +RI1 (9) 
S 

A = exp(R) n (1 -exp(-a+)), 

A’ = exp(R’) n (1 -exp(-a”)), 

a+ 

a’+ 

where the products in (10) and (11) extend over the positive roots of the algebra and 
subalgebra respectively. We are now in a position to apply immediately a formula of 
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Stone (1970) which produces the multiplicity n(s, f, U), which is the number of times 
the A:OA:OA: representation (s, f, U)‘ with highest weight A’ = sa; + ta; + ua;  
occurs in the reduction of the B3 representation [ w l ,  w2 ,  w 3 ]  with highest weight 
A = w l e l +  w2e2+  w3e3. More precisely, we learn from Stone’s paper that n ( s ,  f, U )  is 
the constant term in the formal power series development of the expression 

exp(-A’ - R’)e(A)A’/A, ( 1 2 )  

in powers of exp(-ai) ( i  = 1,2 ,3) .  If we substitute in formula (12) the expressions 
(9), (10) and ( l l ) ,  also taking into account the definitions ( 5 ) ,  if we take care that 
every vector is expressed in terms of the simple B3 roots al ,  a 2 ,  a3, and if we then 
introduce the formal notations x = exp(-a’), y = exp(-a2), z = exp(-a3), we straight- 
forwardly deduce from (8) that n(s ,  f, U )  is the constant term in the expansion of the 
expression 

1 a S X S + f + 5 / 2 - ~  k 2 S + 4 - ~ ~  k , ~ , , - ~ ~ k , , ~ , ~ 2 s + u + 9 / 2 - ~ l k _ ( , , - ~ ~ k ~ ~ ~ ~ - ~ ~ k , ~ ~ ~  ’ *“’Y 

~(1-y)-’(l-y~)-’(l-~~2)-’(1-x~)-’(l-~yt)-’(l-x~~2)-’, ( 1 3 )  

S 

in powers of x ,  y and z ,  and in which 

k l =  w1+ 512,  k2 = ~2 + 312, k3 = ~3 + 112. (14) 

In general, the 48 terms of the sum in ( 1 3 )  can contribute to the constant term of the 
expansion, and this fact excludes at first sight a full analysis. However, if we restrict 
to symmetric representations [U, 0, 01, with the consequence that k l  = U + 5/2, k2 = 312 
and k3 = 1/2, only eight terms of the sum must be taken into consideration. Indeed, 
in order that such a term contributes to the constant term of the series development, 
it is a necessary condition that the exponents of the accompanying powers of x ,  y and 
z are non-positive integers. The only way to satisfy this condition for the exponent 
of x ,  is to require that ElkT( l )  = U +5/2, or equivalently that the permutation 7~ is such 
that ~ ( 1 )  = 1,  and = + l .  Since this restricts the number of possible permutations 
7~ to two, and s2 and can be independently attributed the values + 1  and -1, only 
eight terms in (13) survive. If, furthermore, we pass in (13) to three new variables 
x ’  = x y ,  y ‘  = y ,  z’  = z,  n (s,  f, U )  becomes the constant term in the expansion of 

x ( ~ - x ‘ ) - ’ ( ~ - x ’ z ’ ) - ’ ( ~ - x ’ z ‘ ~ ) - ’ ( ~  - y ’ ) - ’ ( l - ~ ’ ~ ’ ) - ’ ( l  - Y ’ z ‘ ~ ) - ’ .  ( 1 5 )  

Then, it is straightforward to expand the six reciprocals contained in (15) ,  and to 
deduce thereafter that 
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where the 6's denote Kronecker deltas. The eight S-product terms on the RHS of (16) 
correspond to the eight separate terms in the S' summation in (15). In order to reduce 
the RHS of (16) we can proceed as follows. 

In the sixfold sum over S-products of the first type we separate the p = 0 contribu- 
tions, then we replace p by p'+ 1, where p' runs from zero to infinity, and finally we 
omit primes and make use of the property that &&+I = &-1 .b .  But, in this way, we 
exactly obtain the &products of the sixth type, and since the signs in front are opposite, 
both cancel each other. Hence, from the first and sixth type of S-products only the 
p = 0 contributions of the first type remain. Similarly, from the second and fifth type 
only the T = 0 contributions of the fifth type remain, from the third and eighth the 
T = 0 contributions of the third, and from the fourth and seventh the p = 0 contributions 
of the seventh. Finally, replacing the summation index T by p, we obtain 

n(s, t, U )  = 1 S ~ - ~ - ~ , ~ \ + ~ + ~ { S ~ - ~ , ~ + ~ " - Z ~ - ~ , ~ + Z ~ + ~ + Z ~  
A.w,v.p,u*O 

+ ~ f - s - 2 . p + d " - 2 s - u - l . u + 2 u + u  - ~ f - s , p + o s " - 2 s - u - l , @ + 2 u + u  

- ~ r - s - 2 , p + o s v - 2 s - u - 4 , u + 2 u + ~ + 2 p ) .  (17) 

The process of reduction can be repeated on the S-product sums on the RHS of (17). 
The p summation can be cancelled by separating the p = 0 and p = 1 contributions 
from the first and third type of products. We leave it to the reader that similar 
operations can be carried out until only two summation indices are left. At that point 
we obtain 

=a,,, c ~ u - 2 s , @ + u ~ " - 2 s - 4 2 u .  
fi,YZ=O 

Hence 

i fs  = t <v/2 and U -2s -U =even, 
n(s , t , u )=( : l  otherwise. 

Consequently, no degeneracies occur in the reduction of the symmetric B3 representa- 
tions, and the branching rule for that class of representations can be formulated as 
follows: 

where [ r ]  denotes the largest integer not larger than r. 

In the present section we want to generalise the results to the reduction of symmetric 
representations of B, into representations of the subalgebra A:OA:OB,-2 for n > 3. 
In an orthonormal basis {eiii = 1, . . . , n }  the positive roots of B3 are 

ei l s i s n ,  ei*ej  l s i c j s n .  (22) 
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In terms of the simple roots al, . . . , an, the positive roots (22) can be re-expressed as 

ei = ai + ai+l + . . . + an, 

ei +e j  =ai  + W + I  +. . . +ai-l + 2 a j  +2ai+l +. . . + 2 a n  

l s i s n ,  

(23) 
ei - ei = ai + ai+l + . . . + aj-l, 1 si  < j s n .  

Next, we must define the root system of the subalgebra. A convenient choice consists 
in identifying the simple roots a;, a;, . . . , a ; - 2  of Bn-2 with a1, a z ,  . . . , L Y , - Z .  Then 
according to the index of both Al algebras we assign to the first of these the simple 
root ab-1 = en-l + e n  = an-l + 2an and to the second the simple root a; = en-l -en = 
an-1. In order to apply Stone’s formula we need to know which positive roots of B3 
are not a root of the subalgebra A 1 0 A 1 0 B n - 2 .  Clearly these are 

en-1 = an-l +an, 

ei +en-l = ai +. . . +anp2 +2an-1 +2an,  
e n  = a n ,  

1 s i s n -2, 

ei+en 4 = a i + .  . , + ( Y ~ - ~ + C Y ~ - ~ + ~ ~ , , ,  l s i s n - 2 ,  (24) 
e i - en - l=a i+ .  . .+an-2, 

ei -en = a i + .  . .+an-l,  

1 s i s n -2,  

1 s i s n  -2. 

For further calculations, it is opportune to introduce n new vectors Pi (i = 1,. , . , n )  
defined as follows: 

Consequently, the positive roots of B3 which are not a root of the subalgebra are 

It is also straightforward to deduce that 

n-2  

= $  1 i ( 2 n - i - 4 ) a i + ~ ( n 2 - 4 n + 6 ) ( a n - 1 + a n )  
i =  1 

= I  1 n - 2  1 (2n - 3 - 2 i ) p j + f ( n 2 - 4 n  +6)(Pn-1+Pn). 
i = l  
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Furthermore, if we define xi = exp(-&) (i = 1, . . . , n), it is easily seen on account of 
(26) and (27) that 

(1 -xJ1(1 -xiXfl-J1(l -xixfl-lx:)-l 
i = l  

x (1 -xix:-lx:)-l) (1 -xfl-lxfl)-l(l -x,)-l. (28) 

The symmetric representations of B, are [U, 0, . , . , 01 with n - 1 zeros. The 
representations of Bfl-2 will be labelled as [ul, u2,. . . , ufl-2] and those of both AI’s 
by s and t respectively. Hence, the A10A10Bfl-2 representations are labelled by 
(s, t, [ul, u2,. . . , u,,-~])’, whereas the highest weight A’ is given by 

Consequently 

Finally, since from (23) we learn that ai = ei (i s n - 1) and a, = e,, the set of 
Weyl reflected weights associated to the weight A + R  consists of the n!2” elements, 
which in the {e i }  basis have components which differ from those of A+R = 
(U + (2n - 1)/2, (28 - 3)/2, . . . ,3/2,1/2)=, by a permutation of the components and 
by a possible change of sign of any one of these. More explicitly: 

{S(A++R)}={(Eikrr(i), - , ~ n - i k ~ ( n - i ) ,  ~ n k ( n ) ) e }  

with T a permutation of (1,2, . . , , n)  and ei ~ { - l ,  +l}. Also 

ki = USli + n  - i  + 1/2 (i = 1,. . . , n) .  (32) 
At this point we can again apply Stone’s formula. The substitution of equations (28), 
(30) and (31) into the expression (12), together with the definition (9), yield that 
n(s,  t, [ul , .  . . , u,-~]), the number of times the representation (s, t, [u I , .  . . , ~ ~ - 2 1 ) ‘  

occurs in the reduction of [U, 0, .  . , , 01, is the constant term in the power series 
development of 

x (1 -xixfl-lx:)-l(l -xix:-lx:)-l) (1 -Xfl-lxfl)-l(l - x f l l - l .  (33) 

Again, it is clear that the powers of xi (i = 1 , .  . . , n )  in front of the reciprocal factors 
in (33) should have non-positive exponents in order to contribute to the constant term 
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of the development. On account of (32) this can only be achieved for the exponents 
of xi ( i  = 1, . . . , n - 2) if ~ ~ k , , ( ~ )  = ki (i = 1, . . . , n - 2). But, even then we notice that 
u2, u 3 , .  . . , un-2 are necessarily zero. Hence, only symmetric Bn-2 representations 
occur in the reduction. Let us also omit the index 1 of u1 and denote the Bn-2 
representations shortly as [ U ] .  Then (33) can be considerably simplified. More 
precisely, n (s, t, [ U ] )  is the constant term in the development of 

x (1 -XJ1(1 -X1Xn-J1(l - X I X n - l X n )  2 -1 

x (1 - x l x ; - l x y ( l  -x"-lx")-l(l -XJ1, (34) 

where S' refers to the two possibilities k,cn- l ,  = 3/2, = 1/2 and k,cn-l, = 1/2,  
k,(,, = 3/2 and the four independent ways to attribute to en-; and E" the values +1 
or -1. Making now the required expansions in (34), we arrive at 

n(s ,  6 [U]) = c S ~ - u , A + & + u + p  
A , F , ~ , P , u , T ~ O  

x ~ ~ v - u - s - l , F + u + 2 p + o s " - u - 2 s , 2 u + 2 p + u + ,  

+ S u - u - s - r - l , c L + u + ~ p + o s v - u - ~ ~ - 3 , 2 v i 2 p + ~ + ~  

+ s U-U - s - l - 2 , F + u + 2 p + J  0 - U - 2 s -  1.2v+2p+u+r 

+ Su-u-s -1 -3 .6L+utZp+os  u-u-2s -4 ,2v+2p+u+r  

- s Y -U --s - t,& +U + 2 p  +os U -U -2 5 - 1,2 U+ 2 p  +U + T 

- S " - u - s - - r - l . F t u + 2 p + o s Y - u - 2 s , 2 v f 2 p r a - r +  

The reduction of the RHS of (35) proceeds in the same way as in rj 2. To begin with, 
one separates the T = 0 contributions out of the first delta product type. What is left 
exactly cancels the contributions of the fifth type. Similar cancellations occur if one 
separates T = 0 from the eighth type, U = 0 from the second and U = 0 from the sixth. 
We leave it again to the reader to verify that one can achieve the formula 

In the double sum over A and p the contribution is zero unless U - U = A + p. Also 
the product Su-u,A+FSv-u-s-r - l ,A+F is always zero since s + t + 1 # 0. In the same way 
one proves that the second sum over A completely vanishes. Consequently 
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Hence 

+1 ifs = t 4 v/2 and v -2s -U =even, 
n(s9  ‘’ [ u l ) = ( O  otherwise. 

In form this is exactly the same branching rule as the one established in formula (20 )  
for B3. Here the branching reads 

01) ‘ [v,O ,..., O]-+ 1 1 (;,;,[V-CL-2v.O ,... , 
0 [(u-Cr)/Zl 

/A=o v = o  
(39 )  

and has the property that again no degeneracy occurs. 
Although this completes our proof of the branching rule, which is only dependent 

on the rank n of the algebra B, through the number of zeros between the square 
brackets, on the left- and right-hand sides of (39) ,  we want to add two comments. 
Firstly, it is worthwhile to investigate as a verification of the validity of (39 )  whether 
the dimension of the B, representation [U, 0,. . . , 01 is equal to the sum of the 
dimensions of the representations in which [U, 0,. . . , 01 reduces according to (39 ) .  
This calculation is executed in the appendix. Secondly, it has to be noticed that (39 )  
can be repetitively used together with (21) in order to obtain the branching rule for 
the reduction of symmetric representations of B, (n > 3 )  into representations of the 
maximal direct sum of Al  subalgebras of B,, i.e. B,+A:OA:O..  .OA:OA? ( n  
terms), where (Y = 1 if n = even and (Y = 2 if n =odd. It is readily seen that in this 
reduction degeneracies arise. 

4. Representation of the generators 

The algebra B, is an n(2n + 1)-dimensional vector space spanned by n(2n  + 1) basic 
generators (infinitesimal operators), which can be freely chosen. In many theoretical 
investigations the Cartan-Weyl basis is a common choice. However, when considering 
the reduction of an algebra into a regular subalgebra it is useful to construct a basis 
of which part of the basic generators span the subalgebra. The question is whether 
the remaining generators can be constructed such that they form a representation of 
the subalgebra. We want to state here, without explicit construction, that this is indeed 
the case for the algebra-subalgebra system B, 3 B,,-20A10A1. 

Clearly the dimension of the regular subalgebra is ( n  - 2)(2n - 3 )  + 3 + 3 = 
2 n 2 - 7 n  + 12. Consequently, the dimension of the vector space which.is the comple- 
ment of Bn-2@A10A1 in B, is 4(2n -3). An evident factorisation of this number, 
keeping in mind the obvious symmetry with respect to both AI’s, is (2n -3) X 2 x 2 .  
Now (2n - 3 )  is precisely the dimension of the vector representation [ l ,  0 , .  . . , 0 ]  of 
Bn-2, as may be verified from the dimension formula (Al) .  On the other hand, 2 is 
the dimension of the spinor representation [k] of AI. Hence, we state that in the 
complementary vector space it is possible to assign a basis of generators which are 

A I O A l .  A rigorous proof of this statement is based on the observation that the 
generators of B, themselves form the representation [ l ,  1,0, .  . . , 01 of B,. Now, the 
branching of this particular (non-symmetric) representation can be derived by means 
of the method of 0 3 .  We shall not insist on the details of the calculation, and merely 

the elements of a mixed tensor-spinor-spinor representation T[1~03~~~~o’~1’z*1’2 of Bn-2@ 
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state the result 

[I,  190,. * .  I O 1  

+[(1,1, .  . . ,O],O, 0)’+([0,. . . ,O] ,  1,0)’+([0,. . . .O] ,O ,  1)’ 

+([I, 0, . . . , 01,L 4)’ (B, +Bn-20Ai@Ai)  In 3 4 )  140) 

which clearly confirms the intuitive hypothesis. If, moreover, we take into consider- 
ation that 

[l, 1,0]+(1,0,0)’+(0,  1,0)’+(0,0,  l)’+(l,i,&V (B3+Ai@Ai@AiJ, 

[l, 11 + (1,O)’ + (0, 1)’ + (i, t,‘ 0 3 2  -+ Ai @Ai J, 

[ l ,  0 , .  . . , O]+ ([1, 0, . . . , O],O, O)’+ ([O, . . * , 0],4, f,? 

(B, +Bn-2CBAi@Ai) (n  241, (41 i 

D, 0,OI + (1,0,0)’+ (0, t , + I ’  (B3 -+ AiOAiOAi),  

[I, 01 + (0,O)‘ + (3,;)’ 
we can iteratively apply (40) and (41) in order to find out to what representation of 
Al@AICB.. .@Al (n times) the generators of B, which are not generators of the n 
AI subalgebras belong. It turns out that a distinction must be made between even 
and odd n values. In the first case all these generators behave as spinor components, 
in the latter case some of the generators belong to the vector representation of the 
subalgebra A:. In any case, however, generators do not arrange in one mixed 
tensor-spinor operator, but in a sum of these. 

(&+Ai @Ai), 
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Appendix 

According to Judd (1963), we have for the dimension of the irreducible representation 
[ w l ,  w2,. . . , w,] of B, the formula 

a * ( h + R )  
D ” [ W i ,  w2,.  . * I w,l= g 

cy . 
where the product extends over all positive roots of B,. 

Hence, for the symmetric representations we obtain 

(v  + n  - + ) 2 -  (n - j + y  
Dn[v,  0, . . . ,0] = fi 

2 v  + 2n - 1 

n -2  , = 2  (n  -+)’--(n -j++12 

( U  + 2n - j ) ( v  + j - 1) fi - - 
2n - 1 ,=z (2n - j ) ( j -  1) 

!AI )  
2v + 2n - 1 v + 2n - 2 v + 2n - 1) + ( U  + 2n - 2 )  

2n-1 ( 2n-2 )=i 2n-1 2n - 1  
- - 
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As a consequence of the branching rule (39) we should be able to prove that 

V I 2  u-2s 

s =o u=o.1 
Dn+2[V,  0 , .  . . , 01 = 1' (2s + 112 E" D"[U, 0, .  . . , 01 

where Z' signifies that the summation index increases in steps of $ and 2' that it 
increases by 2. In the latter case the summation index starts at 0 if v -2s is even and 
at 1 if it is odd. ( A 2 )  can be transformed into 

u S 

Dn+2[v, 0,  * . . , O ] =  ( v +  l - s ) 2  1" Dn[U, 0, .  * . , O ]  
s = o  u=o.1 

u+2n-1  u+2n-2  [( 2n-1  )+( 2n-1  >I = e ( v + l - s ) 2  E" 
s=o u=o,1 

U u + 2 n - 1  
= E ( v + l - s ) 2  E 

s=o u = o (  2n-1  ) 
2 n + s  

s = o  

A well known summation formula for binomial coefficients has been used here 
(Gradshteyn and Ryzhik 1965). On the use of the properties 

n + k  n + m + l  
k = O  

n + m + l  n + m + 1  2 k 2 (  ni ' )  = ( n  + l ) ( n  +2)  
k = O  

we are able to verify the branching rule. Indeed, 

2n + s  

s = o  

2n + s  2n +s 
s =o s=o 

v+2n+1  v+2n+1  
= (2n + 1)(2n +2)(  2n +3 ) - (2v + 1)(2n + I ) (  ) 2n +2 

- 2v+2n+3 v + 2 n + 2  
( 2n+2 ) - 

2n + 3  

(v2+2v + 1)(4n2 + 10n +6)  -(2nu + v)(4u +2nu +4n + 5 )  
(2u +2n + 3)(v +2n + 2 )  

X 

It is easy to verify that this expression reduces to the one for Dn+* [U, 0, . . . , 01 as 
given by (Al). 
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Noteaddedinproof. WethankDrRCKing(Southampton)forcommunicatingtousthatthe branchingrule(39) 
can be derived as a special case of much more general branching rule theorems (King 1975, King et al 1981, 
Wybourne 1970). 
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